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Three approaches concerning the usage of modalities in the language of quantum 
mechanics were considered; Mittelstaedt and I built up a dialog semantics for 
modalities on a metalinguistic level, and a calculus of quantum modal logic is 
known that is complete and sound with respect to this dialogic semantics. Van 
Fraassen replaced the usual interpretation of quantum mechanics (with the 
projection postulate) by his "modal  interpretation" based on a modal object 
language. Dalla Chiara translated a nonmodal object language for quantum 
mechanics and the appropriate quantum logic into a modal language. Specifically 
we are interested in the similarities and the differences of these three approaches. 

1. INTRODUCTION 

The history of modal logic began with the work of C. I. Lewis in 1912, 
who introduced a strict implication instead of the material implication in 
the logical system of Whitehead-Russel's Principia Mathematica or, equiv- 
alently, enriched the syntax by a new symbol for a modality, e.g., for the 
necessity from which other modalities can be derived. This approach was 
favored by most of the succeeding logicians, e.g., S. Kripke, who introduced 
a Leibnizian possible worm semantics for modalities in which a proposition 
A is necessary iff A is true in every world which is possible relative to A. 
The results of this axiomatic modal logic are summarized in Hughes- 
Cresswell (1968). 

Refusing a statement of Wittgenstein's Tractatus Logico-philosophicus, 
viz. that there is no metalanguage for the one and only object language, R. 
Carnap (1934) criticized also Lewis' extension of the object language and 
contended the possibility of expressing the modalities necessary and possible 
within the metalanguage without using a new symbol for these modalities. P. 
Lorenzen (1954) continued the idea of Carnap and defined a necessity 
relative to a given knowledge W: A proposition A is necessary relative to W 
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iff W implies A. If this implication is purely logical the necessity of A is 
called logical, otherwise, e.g., using physical laws, A is called real necessary 
relative to 14/. In the sense of Carnap and Lorenzen necessity is not a 
property of an object proposition but of a metaproposition that is called 
necessary iff it is true with respect to a metasemantics for all knowledges IV. 

Further historical notes can be found in Burghardt (1979). 
So, if one wishes to use modalities in the language of quantum 

mechanics there are two ways to do so: 
(1) The object language is nonmodal but a relative necessity with 

respect to the knowledge about the physical system in question, e.g., with 
respect to its pure state, can be formulated. Given a semantics for the 
metalanguage necessary metapropositions can be investigated. This way is 
favored by Mittelstaedt and myself and will be considered in Section 2. 

(2) The syntax of the object language concerning propositions A about 
a physical system includes a symbol for a modality, e.g., L for "necessary," 
and a semantics must be given for the proposition LA, "necessary A." This 
was done by van Fraassen, whose approach will be discussed in Section 3. 

At last in Section 4 we summarize the approach of Dalla Chiara, who 
has a nonmodal syntax for the language about a quantum mechanical 
system. This language is translated into an axiomatic modal language by 
which Dalla Chiara's calculus of quantum logic becomes a modal calculus. 

So we have distinguished the approaches of Mittelstaedt, van Fraassen, 
and Dalla Chiara from a formal point of view, viz., by the different levels of 
languages. But the aims of the three authors are different too: 

(1) Mittelstaedt tries to construct a language of quantum physics by 
investigating the logical foundation including modal logic by which he has 
also a connection with probability theory. 

(2) Refusing the projection and the ignorance postulate of quantum 
mechanics van Fraassen builds up a modal interpretation in order to get a 
language whereby he is able to interpret quantum mechanics, e.g., the 
measurement problem, "as if projection- and ignorance-postulates were 
true." 

(3) Dalla Chiara does not use modalities within the language about a 
quantum mechanical system. As is well known this language and the 
appropriate calculus are nonclassical. Dalla Chiara translates this quantum 
logic into a modal logic whose calculus has a "classical" form, in order to 
show that " f rom a logical point of view quantum logic is not really essential 
to the logical development of quantum mechanics." So modalities only serve 
for looking at quantum logic from another point of view. 

Throughout this paper I use three different symbols for the necessity 
(and the possibility): zx (and v) in the approach of Mittelstaedt, [] (and ~ )  
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in the approach of van Fraassen, and L (and M) in the approach of Dalla 
Chiara. 

2. MODAL QUANTUM LOGIC WITHIN THE 
METALANGUAGE (MITTELSTAEDT) 

2.1. Object Language and Relative Necessity. In the object language of 
Mittelstaedt (1978) propositions are considered in a material dialog D,, in 
which the proponent P states a proposition and must defend it against the 
attacks of the opponent O. The development of a dialog is laid down by 
some rules, e.g., Table I. If the proponent stating the proposition A has a 
strategy of success for A within the material dialog irrespective of the 
arguments of O the proposition A is said to be materially true and we 
write ~- A. 

Dm 
In the formal dialog D s attacks on elementary propositions are not 

allowed and commensurability propositions k (A ,  B) are replaced by the 
propositions A ---, (B ---, A). If the proponent has a strategy of success for A 
in the formal dialog, this proposition is formally true which is expressed by 
the symbol ~- A. 

ns 
All formally true propositions can be deduced in the calculus Qeff of 

effective quantum logic that is complete and sound with respect to the 
dialogic semantics. Extending Qen by the tertium non datur A V ~ A  (princi- 
ple of excluded middle) one gets the calculus Q of full quantum logic the 
Lindenbaum-Tarski algebra of which is an orthocomplemented quasimod- 
ular lattice. 

If a figure A ~< B is deducible in Qerr the appropriate implication 
A ---, B is formally true: 

~- A <~ B N ~- A ---, B 
aen I)/ 

The proposition A is formally true iff the implication V--* A is formally 
true; V is the object verum not attackable in a dialog. We have the 
following: 

~- V < ~ A A ~ - A  
Or. as 

If a proposition W representing our knowledge of the preparation of a 
physical system is presupposed in a dialog as being true and if furthermore 
the proponent has a strategy of success for a proposition A using the 
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TABLEI 

Proposition 

Possibilities 

Symbol of attack of defense 

Elementary proposition a a? a ! 
Conjunction A A B 1?,2? A, B, 

k( A, B)? k( A, B)! 

Disjunction A v B '~ A. B,-k( A, B)! 
Material 

implication A --, B A, k ( A, B )? B, k ( A, B )! 

Negation --,A A 

knowledge W we write 

WI-- A or equivalently I-- W ~  A 

In a material dialog we use the symbol ~ w A instead of W I-- A; in this case 
A is called necessary relative to W. D., 

It is possible to replace the material dialog D,, by the formal dialog /9/ 
adding to the latter the factual implications A i ~ Bj that represent the 
contingent laws F~ q) of quantum mechanics [see Mittelstaedt (1979a)]. 
Extending the calculus QCu by the corresponding factual beginnings V <~ Aj 

~q(/) and some other --* Bj we get the calculus ~ur~(/). The relations between ,~efr 
well-known logical calculi can be found in Burghardt (1980). 

Concerning the relative necessity of a proposition A we have 

Z~wA: C ) W t -  A O  ~- W ~ A 
D~ Om 

cwj(Aj-. . j)  w- .A 

(3 ~- W<~A 
Q(/~ 

elf 

2.2. Metalanguage and Necessary Metapropositions. As mentioned in 
the introduction Mittelstaedt defines the necessity within the metalanguage. 

The elementary metapropositions 



Modalities and Quantum Mechanics 1175 

and 

"A is formally true": 
o: 

are proof definite, i.e., if a deduction of the figure V~< A is given that should 
prove the truth of the elementary metaproposition it is possible to check this 
deduction by the rules of the calculus Qcrf. 

As in the object language connected metapropositions are dialog defi- 
nite, i.e., there is a metadialog laid down by some rules in which the 
metaproposi t ion can be stated by the proponent  as an initial argument. One 
of the rules is given in Table II. The defense 6! is a deduction of the figure 
V ~< A within the calculus Q~tf or Q~)  resp. In the following we use the 
symbol 

V < A  instead of ~- V~<A 
eft 

[Remark: In Burghardt (1979, 1980) I used the symbol V _< A for ~- V~< A, 
Q e f f  

but this is only a special case of ~- V ~< A.] Now we consider metaproposi-  
eff  

tions , ~ ( W  < A i, V < Bk) whose elementary metapropositions are W _< A i 
and V _< B k. 

(2.1) Definition. A~(W <_. Ai, V <_ Bk) is necessary iff A-~ is materially 
true for all W, i.e., the proponent  has a strategy of success for A j within the 
material metadialog for all knowledges W. 

In Burghardt (1980) I proved that there is a calculus AT/~r r which is 
complete  and sound with respect to the metadialog semantics restricted to 
necessary propositions, i.e., a metaproposition A-3 is necessary iff the figure 

- - .  ~ 

E < A s is deducible in Meff. (E is the meta verurn, a metaproposit ion not 
a t tackable in a metadialog.) This calculus consists of three parts: 

TABLE II 

Possibilities 

Metaproposition Symbol of attack of defense 

Elementary metaproposition ~ ~? ~ ! 
Metaconjunction A ~ B 1?,2? A, B 
Metadisjunction A v B ? A or B 
Material meta- 

metaimplication A ~ B A B 
Metanegation :IT 
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(a) The intuitionistic calculus of formal quantum meta logic yet men- 
tioned by Mittelstaedt (1979a) covers all metapropositions that are true with 
respect to a formal metadialog in which the elementary metapropositions 
are not attackable. 

(b) The calculus 'q(f) of the true object propositions is formulated in "~eff 
the metalanguage. 

(c) The "modal  part" is the link between the object language (b) and 
the formal metalanguage (a). 

In a necessary metaproposition one can use the symbol z~ instead of 
W_< for the truth of A j does not depend on W. Moreover, we use a 
metafalsum ~: If one of the participants in a metadialog uses this argument 
he loses the dialog at once. So the rules of the "modal  part" that are 
comparable with well-known modal calculi and important for probability 
theory [see Burghardt (1979) and Mittelstaedt 1979b)] can be written 

zx Tf < Yf 

z x ( A - ~ B ) < A A ~ A B  

zxA ~ zxB < zx(A A B) 

2.3. Proof  Process and Real Semantics for Relative Modalities. Let 
~ ' ( S )  or ~ " ( S  i) resp. be the Hilbert space of a quantum mechanical system 
S or S i resp. and ~, the set of all S i. 

(2.2) Definition...r { s i ~ T I ~ ' ( S i ) =  ~ ' ( S ) ) .  If the system S 
has the preparation W we write S = S ( W )  or W =  W(S); a preparation is 
thought of as a knowledge about S got by measurement, proof, and dialog 
processes. 

(2.3) Definition...r162 ._ �9 gr "-- ( S i  ~ "/~..~(S)I S i =  s i ( w ) }  �9 ~,,a ~r . . . . .  ~ s )  is the 
set of all systems S ~ whose Hilbert space is the same as that of S and which 
have the same preparation IV. Let A be a proposition concerning the system 
S ( W ) .  

(2.4) Definition. A is called true in S ( W )  iff S ( W ) ~ - A  (i.e., iff the 
o,, 

proponent  has a strategy of success for A in a material dialog if the system 
relevant for measurements has the preparation W). 

(2.5) Definition. A is called necessary in S ( W )  iff W ~ - A  (i.e., iff the 
o,  

proponent  has a strategy of success for A in a material dialog if the 
preparation W can be used as a true premise, but the success in the dialog 
does not depend on the contingent properties of S). 
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So the relative necessity does not depend on the special system S but 
only on the preparation W; this leads to the following: 

(2.6) Externa l  semantics for  relative necessity. A is necessary in 
S ( W )  ~ VS  i ~ zc(w) . S i ( W )  r- A 

" ~  .,'e" ( S ) " 
Int. D,, 

By (--) I wish to emphasize that (2.6) is only an interpretation-- 
Int. 

Mittelstaedt (1979b) calls it an "ensemble theoretic interpretation"--in 
contrast to the definition (2.5). Of course this interpretation depends on the 
size of the set that is presupposed by Mittelstaedt (1979b) as "sufficiently 
large finite or infinite." 

If one defines an equivalence relation = on the set ..4t'g(s) by 

s ' =  sJc )w(s ' )  = w ( s O  

the above interpretation for the relative necessity can be written 

(2.7) A is necessary in S ( W )  ~ VS  j ~ 7: ( S  i = S O S  ~ ~- A )  and in an 
Int. D,n 

analogous way for the relative possibility 

(2.8) A is possible in S ( W )  ~ 3S  ~ ~ y: ( S  i = S and S ~ t- A) 
Int. D,. 

A "possible-world interpretation" is proposed in Mittelstaedt (1980) in 
which W is presupposed as a maximal  knowledge, i.e., a pure state. In 
contrast to the knowledge about a classical system W can never be perfect  
and therefore there are propositions objectively undecidable. 

W is extended by parameters ~(") such that "possible worlds" ( W, ~(")) s 
represent dispersion-free states of the system S in which each proposition A 
about S is determined, i.e., 

ZX(w,x(,))s A or ZX(y.x~,))s-,a 

The real situation of S is given, say, by (W '~, h~)s . 

(2.9) Definition. (i) zcU s = ((Wo, X(~))sl~ ~ I, p ~ J}  (with some index 
sets I and J )  is the set of all "possible worlds" of S. (ii) ~"s (y):= 
((Wo, h(~))s E ~//'slWo = W} is the set of all "possible worlds" of S corre- 
sponding to the same state W. 

(2.10) In ternal  semantics for  relative necessity. A is necessary in 
( W  ~, h~)s  ,--, 

Int. 

v(w., x('))s .4 
o~ 

i.e., A is necessary in the "real situation" (W w, XW)s of S iff in each 
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"possible world" (W w, X~ to the same state W "  as the 
"real  s i tua t ion"-- the  proponent has a strategy of success in the material 
dialog about A. 

Using the equivalence relation --- defined on Y/~s by 

(w . .  --- (Wo. w. = Wo 

the external semantics for the relative necessity and- - in  an analogous way 
- - f o r  the relative possibility can be represented by the following: 

(2.11) A is necessa~ in (W",  X~')s 
Int. 

D,, 

(2.12) A is possible in (W ~', Xw)s <---> 
Int. 

(w"'.x")s and 

Comparing (2.11) with (2.7) and (2.12) with (2.8) it can be seen that instead 
of the system S '  in the external semantics we have the parameters X ~l in 
the internal semantics. 

It must be emphasized that X(~,) cannot attach objectively a value of an 
observable to the system not yet given by W; this would lead to a 
contradiction to the well-known non-hidden-variable theorems. The param- 
eter does not concern the values in the real situation of the system but 
rather the predictions of possible measurement outcomes. 

The above interpretations are also called proof process semantics for 
modalities because we used the material dialog that is the frame for the 
proof of a proposition. Stachow (1981) proposes a real semantics equivalent 
to the proof process semantics. 

A proof process is a branch in a game tree which represents all possible 
proof processes. For example, consider the proposition a A b concerning 
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the system S: 

S 
T 

a A b  
I /a 

6! ~ a  ! 
I 

b 

I 

The proof of a A b fails of course by a disproof of a, i.e., •!, for instance, 
and the only successful proof is (aL b! ,k (a ,  b)!). The proof of each 
elementary proposition is a yes-no experiment that gives us the information 
if the system S has the corresponding property E~ or not. 

(2.13) Definition. (a) A materialprocess is an n-Tupel ( E  1 . . . . .  E,,) of 
properties of a system S represented in the game tree by a branch ~ P := ( p } 
is the set of all material processes and S ) - p  is an abbreviation for the 
statement "A material process relative to the system S is performed." 

(b) P ( A)  is the set of all material processes corresponding to successful 
branches in the game tree. Example: P(a  A b) = ( ( E,,  E b, E~<~.hl) ). 

(c) A proposition A is true relative to S iff S t-- p and p ~ P(A) .  
(d) The physical state Po is the material process that describes the whole 

"his tory,"  i.e., the preparation, of the system. In this sense the knowledge 
given by P0 is said to be maximal; it can represent, e.g., a pure state or a 
mixture. (This must be distinguished from Mittelstaedt's terminology always 
using "maximal"  for the knowledge representing a pure state.) Po := (P0} 
is the set of all pure physical states. 

(e) The operation W is defined by w : P '  ~ P0 with 

e ' =  {( Po, P) ~ eo • elPo = ( E . . . . . .  Eb) ~ Po and 

p = ( E  . . . . . .  PC (E . . . . . .  E . . . . . .  Po) 

and (Po, P)  = ( (Ei ) ,  (E j ) )  ---' (Ei,  Ej) 
(f) For  each proposition A the successor relation N,4 is defined on the 

set Po by 

qoNAPo iff 3 p ~ P ( A ) U P ( ~ A ) :  qo=PotOP 

I This branch corresponds to a physically realizable process. 
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(2.14) Real semantics for relative necessity. A is necessary relative to Po 
iff 

Vp' ~ P: (Po W p'NApor ~ P( A) )  

(I.e., iff for each successor P0 ~ P'  of Po the material process p '  corresponds 
to a successful branch in the game tree.) 

Here we have presupposed that P0 represents a maximal knowledge 
about  the system; in the more general case Stachow uses a knowledge 
W =  P(A' )  instead of P0 which includes a subjective ignorance: A' is a 
proposit ion about the system representing a nonmaximal knowledge, i.e., A' 
does not contain the whole "his tory" of the system. In the set P(A' )  of 
material processes corresponding to successful branches in the game tree of 
A' there are physical states P0 that are the starting points for a proof  of the 
relative necessity of a proposition A: 

(2.15) A is necessary relative to W =  P(A' )  iff 

Vp0 ~ W V p '  ~ P: ( Po tU p'NApo(hp'  ~ P(  A) )  

A is possible relative to W = P(A' )  iff 

3po ~ W3p '  ~ P: (Po t~ p'NAp o and p' ~ P(  A) )  

Remark. I think the expression "real  semantics" is not correct because 
only one branch of the game tree can be a part  of the reality. The name 
"potent ia l i ty  semantics" would be more adequate for the material processes 
p' ~ P are potentialities of the reality. 

2.4. The Representation of Modalities in the Hilbert Space. The 
proposit ions A about a quantum mechanical system S are represented in 
the appropriate  Hilbert space by subspaces M A or projection operators PA 
on MA, respectively, and an implication A ~ B is materially or formally 
true iff M A _ M B or PA ~< Ps. Therefore we have for the relative necessity 

ZXwAOP W <~ PAC)P W = P w P A O P  W = PAPwP A 

and 

w A C ) M w  c_ MAC)V~ p ~ , ~  : ( r ~ Mw(Se  p ~ MA) 
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The necessary negation is represented by 

ZXw~A(TMw c M a(TM wA_ M A 

OV~ ~ MwWp~ MA: ~_L ~p 

C)Wp ~ M A ( ~ 3_ r ~ M W) 

C)Wp ~ ~"( r ~ MA~cp 3_ Mw ) 

The relative possibility is defined by 

VwA: Nqzxw~A 

and we have 

V w A C ) ~ P w  = PwP~AC)~Pw = P w ( 1 -  PA)C)PwPA ~ 0 

and 

~ wAC)~(V~ ~ ~ ( ~  ~ MA C7~ J_ Mw)) 

These results will be compared in Section 4 with Dalla Chiara's modalities. 
Further modalities and their Hilbert space representation can be found 

in Mittelstaedt (1979b). 

3. M O D A L  I N T E R P R E T A T I O N  OF Q U A N T U M  M E C H A N I C S  
(VAN FRAASSEN) 

3.1. Why and to What End a Modal Interpretation? As is well known 
there are some difficulties in the discussion of the quantum mechanical 
measuring process [cf. Mittelstaedt (1976)]. Two arguments used in such a 
consideration are the projection postulate, 

PP: " I f  an 0 measurement is made on some system in state 0 = Edi[Oi), 
then the system undergoes a transition to a state IOk) with probability 
d2 ,, 

k" 
and the ignorance postulate, 
IP: " I f  a system is in mixed state p, then it is really in one of the proper 

eigenstates of p." 
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Van Fraassen (1972) argued that both PP and IP together with some other 
postulates lead to inconsistencies wherefore he refused PP and IP: " I  now 
accept the postulates called composition, evolution, reduction and Born, 
with no restrictions on their scope; reject projection and ignorance; and 
develop an interpretation according to which the phenomena are as if 
projection and ignorance were true [cf. van Fraassen (1976)]." 

He introduced a formal language the syntax of which includes a symbol 
[] for "necessary" and called it a "modal  interpretation of quantum 
mechanics." In particular, he gave an interpretation of the EPR paradox by 
this modal language. Recently van Fraassen (1979) deepens his modal 
concept giving an axiomatic approach to his modal interpretation. 

3.2. The "Copenhagen Modal Interpretation" (CMI). 3.2.1. Mixtures. 
We consider a state p describing the dynamical state of the system in 
question by which predictions about the evolution of this system can be 
made according to the laws of quantum mechanics. If p is a pure state 
(p = p2) the information about the system given by p is complete. (In the 
terminology of Mittelstaedt the knowledge given by p is maximal and 
cannot be refined up to a perfect knowledge.) 

If p is not pure, i.e., p is a mixture, there are decompositions p = ]Ec~P~, 
with pure states ~i and projections P,, onto the one-dimensional subspaces 
[~i]. All such pure states ~ are comprised in the set Up. As mentioned above 
van Fraassen rejects the ignorance interpretation and premises the concept 
of a mixture "as being equally basic and objective as pure states." Further- 
more he prefers the so-called 

(3.1) Copenhagen interpretation of a mixture. " I f  the dynamical state p 
at time t is pure it provides complete information about the values of the 
observables at that time; but if the state is mixed, the information is 
incomplete." 

In order to complete the information in the case of a mixture van Fraassen 
uses a parameter X that is a pure state in Up. The model (p, X) describes the 
actual situation of the system in the mixed state p. Of course this concept 
can also be used in the case of a pure state p = p2 when X coincides with p 
and the model (p, X) does not give more information then the dynamical 
state p itself. 

This parameter X refines the information of p partly up to the 
information of a pure state: X can only be used to describe the actual 
situation but  not to make predictions about the evolution of the system. The 
latter can only be done by the mixture p. So, van Fraassen introduces two 
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different kinds of propositions about a physical system: 

(3.2) Let m be an observable, E a Borel set on the real line (E  ~ ~ ( R ) )  
and 

P ~ ( E )  = E T r ( a ~ . A )  
A ~ E  

the Born probability to find a value of m in E if the system is in state a; A 
is an eigenvalue of m and ~ ^  the projection on the corresponding 
eigenspace. (i) The state attribution [m, E] ("m must have a value in E ") is 
true in to = (p, X) iff P ~ ( E ) = I .  (ii) The value attribution (m, E)  ("m 
actually has a value in E " )  is true in to = (p,)~) iff PX(E) =1. This is called 
by van Fraassen the Copenhagen postulate. 

In the case of a pure state # -- p2 = h a value attribution (m,  E )  is true in to 
iff the corresponding state attribution [m, E] is true in to, i.e., there is no 
further information by h in the case of a pure state in agreement with the 
"Copenhagen interpretation." But if p is a mixture we only have the 
implication: If [m, E] is true in to then (m, E )  is true in to too; i.e., there 
are value attributions (m' ,  E ' )  being true though the corresponding state 
attributions [m', E']  are not true. The truth of (m',  E ' )  in this case is 
yielded by the new parameter X. 

Van Fraassen (1973) emphasizes that the parameters ~ are no hidden 
variables in the sense of von Neumann, Kochen-Specker,  Jauch-Piron,  or 
Bohm-Bub,  though there are some connections to these hidden variable 
theories. 

3.2.2. Quantum Logic. In (3.2) we introduced two kinds of attributions, 
viz. [m, E] and (m,  E ) ;  now we define the corresponding propositions: 

(3.3) (i) I[m, E]I '= ( to[m, E] is true in to } is a state attribution proposi- 
tion. P := ([m, E])  is the set of all state attribution propositions. 

(ii) [(m, E)I  := (tol(m, E )  is true in to) is a value attribution proposi- 
tion. $/,= { I(m, E)I  } is the set of all value attribution propositions. 

Defining the operations 

I[m, E]I • = I [ m , R -  E]I  

l[m, E ] l t ]  I[m, F]I  = I[m, E U F]I  

I [ m , E ] l C h l [ m , F ] l = l [ m , E n F ] l  
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and the relation 

I[m,E]lc_l[m',E']l  iff P~(E)<<.P,~,(E') forall a, 

the algebraic structure (P ,  c_', • ) can be shown to be an orthoposet that is 
a "quantum logic" in the sense of G. Hardegree.  On the set V another  
relat ion ~. can be defined and (~/, .r _1_ ) is an or thoposet  too isomorphic 
to ( P ,  ~ ,  •  

3.2.3. Modalities. An accessibility relation R on the set of all states is 
def ined by the following: 

(3.4) aR/3 iff a is a mixture of 13 and another  state 3': a = c/3 +(1  - c)3' 
with c ~ (0,1]. 

Ochs (1979) calls/3 a convex component of a iff aR/3. It can be shown that 
this is equivalent  to the relation R for models: 

(3.5) toRto' iff (to ~ q ~ t o '  ~ q) for all q ~ P . W e  call to' possible relative 
t o  to. 

N o w  we are able to introduce the modal  operators 13, ~ ,  rn, and ~ ;  for any 
q ~ P V  we define the following: 

(3.6) D q =  (tol(tohto'C3to'~ q) for all to'} 

O q  = ( tol( toRto'(3to' ~ q) for some to'} 

EJq = ( to = ( a , )~ ) [ ( a  = /3Oto '  ~ q) for all to '=  (/3, /~))  

~ q  = { to = ( a ,  X) l (a  = f lOto '  ~ q) for some to '=  (/3, /~))  

and q is called necessary (possible, dot necessary, or dot possible, resp.) iff 
Oq = q ( ~ q  = q, rnq = q or <~q = q, resp.) 

So we have that  

[[m, E]I  is necessary 

C~( ( a ,  X) I ( aN/30 ( /3 , /~ )  ~ I[m, E]I )V(/3 , /~))  = I[m, E]I  

O V a  with P~( E ) =1  V/3: aR/30(  /3, tz ) ~ I[ m, E][  

This  suggests a definit ion of a relative necessity: 

(3.7) Definition. (i) I[m, Eli  is necessary relative to the model  to = (a,)~) 
in which [m, E]  is true, i.e., P,~(E) =1  

C~(aR/35)(/3,1~)~l[m,E]l) for all t o=  (/3,/~) 

(-3If a is a mixture of /3  and some other  state 3', we have P ~ ( E )  =1 .  
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Of course l[m, E]I is necessary relative to each model (a, ?~) with a pure 
state a = a 2=  ~ in which [m, E] is true; i.e., with respect to a pure state 
there is no difference between truth and relative necessity. 

(ii) Kin, E)I  is necessary relative to the model to = (a,?~) in which 
~m, E )  is true, i.e., P,X,(E) =1 

(3 If a is a mixture of fl and some other state 3' and if /t ~ U,, we 
have P ~ ( E )  = 1. 

(iii) I(m, E)I  is dot necessary relative to the model (a,?~) in which 
(m,  E )  is true 

(3P~ ( E )  = 1 for all ~ ~ U~ 

Nevertheless, the three definientes in (i), (ii), and (iii), resp., are equivalent, 
and so the relative necessities and the relative dot necessity cannot be 
distinguished semantically. This result leads to a connection of the two 
orthoposets P and V by the modal operators: 

(3.8) DI[m,E] I=~I[m,E] I=DKm,  E ) I = G I ( m , E ) I  

Furthermore we know that I[m, E]I is necessary: 

(3.9) I[m, E l i  = Dl[m, E]I 

Equations (3.8) and (3.9) together can be interpreted as follows: 

(3.10) A state attribution is true in the model (a, 2~) (i) iff it is necessary 
relative to this model, (ii) iff the corresponding value attribution proposition 
is necessary relative to this model. 

On the other hand value attribution propositions generally are not neces- 
sary. 

3.3. A Comparison of van Fraassen's Necessity with Mittelstaedt's 
Modalities. Considering the concept of relative necessity within the ap- 
proaches of Mittelstaedt and van Fraasscn a serious difference can be stated 
in the case of a system in a pure state. According to van Fraassen it does 
not make any sense to say that a proposition A about this system is 
necessary except that A is true. On the contrary Mittelstaedt emphasizes 
that it is just  the pure state (with a maximal knowledge about the system) 
which is the presupposition of a meaningful concept for the modalities. 

This fundamental difference is reflected by the hidden variable inter- 
pretations of the necessity: As seen in Section 2.3. Mittelstaedt's internal 
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semantics for relative necessity starts with a pure state and uses the 
parameters  )J~} in order to cover all possible outcomes of a measurement.  
On the other hand, van Fraassen's parameters )~ are the pure states in a 
decomposit ion of a mixed state. Nevertheless, we introduce a necessity 
operator zx and a possibility operator v within the approach of Mittelstaedt 
analogous to the way van Fraassen does; /x and v resp. are defined on the 
set of subsets S of the given Hilbert space ~ in the following way: 

(3.11) 

Using the results of Section 2.4 we get for a subspace S = M A corresponding 
to a proposit ion A 

s A -- { {P ~ ,,~IA wA } 

= { } 

that motivates our definition of s and ~7. Of  course (3.11) is equivalent to 

(3.12) 7xS = S 

I A) 

The state attribution proposition I[m, El[ can be identified with the sub- 
space M A corresponding to A = [m, E] and we get 

(3.13) 7xl[m, E]I = I[m, Ell = t31[m, Ell 

So, at least in a certain formal sense, the necessity operators of Mittelstaedt 
and van Fraassen are equivalent. 

4. M O D A L  T R A N S L A T I O N  OF Q U A N T U M  LOGIC 
(DALLA CH1ARA) 

4.1. The Embedding of Intuitionistic into Modal Logic. In 1932 the 
intuitionistic logic was embedded into the well-known modal system $4 by 
K. G6del  (1932) and it became possible to prove the validity of a proposi- 
tion of a nonclassical system within a "classical" modal system. $4 is 
"classical" insofar as it is a modal extension of the classical propositional 
calculus. The embedding can be performed by different functions, e.g., by 



GOdel's interpretation I~ that is a function on the set Z,o of well-formed 
formulas (wffs) in 9,  v ,  A, ~ into the set ..~e^ of modal wffs in - ,  &, 
v ,  D, L [see Rautenberg (1979) and Figure 1] with 

Lp if P = p is a variable 

L-I~(Q)  if P = - - , a  

~ ( p ) =  t~(Q)&t~(R) i f P = Q A R  

/ ~ ( Q ) V ~ ( R )  if P = Q  V R 

L(# (Q)Dt t (R) )  if P = Q ~  R 

One can prove that a proposition P is valid in the intuitionistic logic iff its 
" m o d a l  t rans la t ion" /~(P)  is valid in $4: 

i $4 
P iff ~ / I ( P )  

tJ 

Of course this is a remarkable mathematical result. But this embedding can 
neither help us " t o  understand better the sense of intuitionistic proposi- 
t ions" as pretended by Rautenberg (1979)--for  the usage of such vague 
notions as necessary and possible cannot enrich our unders tanding--nor  is 
the nonclassical property of the intuitionistic logic unimportant;  indeed $4 
is an extension of the classical logic but the modalities are totally new 
compared  to classical logic. 
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Fig. !. Embedding of the intuitionistic logic i into the model logic $4. The big circles represent 
the sets of nonmodal wffs (on the left) and of modal wffs (on the right) resp. 
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4.2. The Embedding of Quantum Logic into Modal Logic. An embed- 
ding similar to the one mentioned above was done by Dalla Chiara (1977) 
with her quantum logic. She built up a language about a quantum mechani- 
cal system which we will consider later and translated its logic into a modal 
language in order to show that " f rom a logical point of view quantum logic 
is not really essential to the logic development of quantum mechanics, since 
the role played by this logic can be equivalently substituted by a form of 
classical modal logic." In a more recent paper Dalla Chiara (1979) again 
considered modal logic in order to "explain" special features of quantum 
logic: She wants " to  analyse, in the particular case of quantum logic, a 
possible explanation of the failure of the Lindenbaum-property, by referring 
to a modal interpretation of this logic." However, concerning the embed- 
ding problem Dalla Chiara (1977) writes: " . . . c an  we really assert that we 
have completely reduced quantum logic to classical logic?... B ~ and B B + 
p(Orth) are not simply classical logic. Indeed they represent two very 
particular extensions of classical logic." That is exactly what I said above: A 
"classical" modal calculus is totally different from a classical logic. 

Extending the work of Goldblatt (1974), who only considered proposi- 
tional logic without quantifiers, Dalla Chiara begins with a first-order 
language Ao about a quantum mechanical system whose atomic sentences 
P~b are "The  value of the observable Q~ (corresponding to the one-placed 
predicate P~) is in the Borel set b." The semantics of this language is 
induced by the complete orthocomplemented quasimodular lattice V(J~) of 
subspaces of the Hilbert space , ~ ( S ) .  This lattice is a part of the algebraic 
quantum orthorealization 

a = ( v ( g ) ,  v, 

~ ( R )  is the set of all Borel sets on the real line and v is a valuation function 
from the sentences of A a into V(~ ' ) ,  e.g., 

v(Pib) = ( ~b ~ ,.~[P~,(b) =1} 

at which P~(b)  is the well-known Born probability to find a value of the 
observable Qi in the Borel set b if the system is in the state ~b. A sentence 
of A a is called true in a iff v(a)= ,gff and algebraically quantum valid iff 
v (a)  = ,~ff for any algebraic quantum orthorealization. 

In a second step DaNa Chiara introduced for each algebraic quantum 
orthorealization a a possible-world semantics for s equivalent to the 
algebraic semantics. The "possible worlds" are the nonempty subspaces of 
~ ,  i.e., the set I ,=V(Of~)-{0}  that is a part of the Kripkian quantum 
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orthorealization 

.X/"~ = ( , ~ ( R ) ,  I ,  R , t> )  

R is the nonorthogonality re la t ion on V(Jt  ~ and  t> is a subset  of  I x { a l a  
sen tence  of  A p } that  de te rmines  if a sentence a is true in the world  X: 

Xt> P~b iff X C_ v( P,b) 

Xt>--,fl iff (not  Yt>fl)VY with X R Y  

Xt>fl m 3, iff X~,fl and Xt>7 

X t> fl ~ "r iff ( r t> fl N r t> "r ) v r ~ I 

Xt>(x)fl  iff Xt>fl(b)Vb ~ ~ ( a )  

A sen tence  a of  0~ is called true in .~~  iff Xt>a for all X ~  I. Da l la  
C h i a r a  has p roved  the equivalence 

a is true in a iff a is true in ~ 

Al so  a concep t  of  Kripke quantum validity can be in t roduced  and we have 

a is a lgebra ica l ly  quan tum valid iff a is Kr ipke  q u a n t u m  valid. 

T h e  set of  all  a lgebra ica l ly  quan tum valid sentences can be covered by the 

P 

I 
I i 

%% / 

Fig. 2. Embedding of the quantum logic QL of the modal logic B B + p(Orth) (cf. Figure 1). 
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calculus QL of quantum logic. 
I wish to emphasize that within the language .LP introduced so far it is 

not possible to express propositions including modalities; this can be done 
only in the following language *~f'ax. 

The syntax of Za 1 contains the connectives - ,  &, D, ~ ,  the quanti- 
fier A and the modal operator L. For each algebraic quantum orthorealiza- 
tion a we introduce a semantics by a 

BB-Kripkian realization ,gf't ~ = ( . ~ ( R ) ,  I ,  R,  ~ ) 

at which R is again the nonorthogonality relation on V ( . ~ )  and ~ is a 
subset of 1 x ( ala sentence of L~' 1 } defined by 

X ~ P~b 
- B  

x B&'y 

X ~ B ~ ' y  

X ~  A x B  

X ~  Lfl 

iff X c_ v( Pib ) 

iff not X ~ 13 

iff X ~  fl and X ~ ' y  

iff ( X ~ f l ~ X  ~ y ) 

iff (Y  ~ f l ~ Y  ~ y)VY ~ I 

iff X ~ f l ( b ) V b  ~ ~ ( a )  

iff Y ~ f lVY ~ I with YRX 

A sentence a of .L-a1 is true in ,~t/'l a iff Y ~ a for any Y ~ I and BB-valid iff 
ct is true in ,X/'l Q for any B B-K_ripkian realization. The set of all B B-valid 
sentences can be covered by a modal calculus B n that we will consider later. 

But first we embed the quantum logic QL into the modal language ~1 
by a translation function p as follows (see Figure 2; M := - L -  is the 
operator  for the possibility): 

( LMa 

/L-o(B) 
if a is an atomic sentence 

if a = ~f l  

i f a = f l A y  

if a = f l - - )  y 

if a = ( x )13 

As in Section 4.1, we have the following theorem: 

A sentence a of Z- a is algebraically quantum valid, i.e., is deducible in 
the quantum logic QL, iff p ( a )  is deducible in the 

(4.1) modal calculus B B +p(Orth) comprising [cf. Hughes and 
Cresswell (1968) and Dalla Chiara (1977)] 

(a) the classical first-order logic; 
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(b) the modal formation rule " I f  a is a wff then La  is a wff too" 
(c) the modal transformation rule " I f  a is a sentence then La  is a sentence 

too"; 
(d) the modal axioms 

MI :  L a D a  
M2: 

M3 : ot D L M a  

p(Orth):  ( a & - f l )  ~ M ( a & L -  ( a & f l ) )  

M1 and M2 together with the classical propositional calculus form the 
modal system T; adding M3 we get the Brouwerian system B. If we use 
the classical first-order language as the nonmodal basis the 

(4.2) Barcan formula A xLct D L A x a  

is deducible in the corresponding Brouwerian system. Neither B is con- 
tained in the well-known calculus $4 nor vice versa, but B is contained in 
$5 that is equivalent to $ 4 +  M3: 

Concerning the semantics there are two differences between the Kripkian 
semantics of Dalla Chiara and the Kripke semantics for T, $4, $5: 

(1) The accessibility relation R is reflexive and symmetrical but not 
transitive. (It is reflexive in T, reflexive and transitive in $4, reflexive, 
symmetrical, and transitive in $5) 

(2) Dalla Chiara uses a complete orthomodular lattice for the "possible 
worlds" instead of a set without any algebraic structure. 

A completeness and soundness proof with respect to the Kripkian 
semantics was given by Goldblatt (1974) for the propositional calculus B. In 
the predicate language with quantifiers such a proof is a little bit easier if 
the Barcan formula is valid. This should be the reason why Dalla Chiara 
emphasizes the validity of the Barcan formula and uses the notation B e, 
i.e., B r o u w e r -  Barcan. 

4.3. A Comparison of Dalla Chiara's Modalities with Those of 
Mittelstaedt and van Fraassen. Let fl be a proposition about a physical 
system. The proposition "fl is necessary" cannot be expressed in Dalla 
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Chiara's nonmodal object language .s Therefore/3 has to be translated 
into the modal language s and we have the following: 

(4.3) P(fl) is necessary in the world X 

C~X ~ Lp(/3) 

C~vrRX: r~p( /3)  

cwvd_x: VC_ v(/3) 

NVY ~ V(Yt~ (Y.]_ X O Y  c_ v(f l ))  

In the language of Mittelstaedt we had 
The proposition A is necessary relative to W 

GYm e , ~  : ( ,~ e MwChe p e MA) 

or equivalently in the notation of Dalla Chiara: 
(4.4) 13 is necessary relative to X 

Comparing (4.3) and (4.4) we have 

(4.5) X # Lp ( fl )C)ZX xfl 

i.e., if a proposition is necessary in the sense of Dalla Chiara it is necessary 
in the sense of Mittelstaedt too. The inverse of the implication in (4.5) is 
generally not true. 

Before discussing the probability we must consider the necessary nega- 
tion that is very important. 

If Dalla Chiara wishes to express the proposition " n o t / 3 "  she uses the 
object language .W: 

(4.6) " N o t / 3 "  is true in the world X 

O V Y R X :  not Yl>fl 

OVY$_ X: not Y _ v(/3) 

n v v  ~ v (x ' ) :  (Y _ o(/3)~Y• x) 
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The same result is got by translating ~/3 in the modal language Za and 
considering X ~ p(~fl). The latter is equivalent with X ~ L - 0(/3) which 
shows that a negation of an object proposition is necessary if we use the 
modal language! 

As shown in Section 2.4 the necessary negation ,x w~ A in Mittelstaedt's 
approach is represented in the Hilbert space by (using the notation of Dalla 
Chiara) 

(4.7) zx x--,/3ClVqo ~ ,.,'f': (qo ~ v(/3)N~o_L X) 

So we have the equivalence of the necessary negation 

(4.8) Xt>~fl(3X w L - p(fl)63ZX x~  fl 

At least we have to consider the possibility defined as the negation of the 
necessary negation. Once again in Dalla Chiara's approach the modal 
language must be used in order to express the possibility. 

(4.9)/3 is possible in the world X 

N X ~  Mp(/3) 

-L-p(~3) 

N not X ~ L - p ( / 3 )  

(3 not(VY E V(,.~) : (Y  c_ v(/3)(-)Y.I_ X))  

N3Y ~ V(gf'): (Y _ v(B) and Y./_ X) 

The possibility of Mittelstaedt can be formulated in the notation of Dalla 
Chiara by 

(4.10) v x/3 NSZX x--,/3 

N not(Vcp ~ ,,~: (rp ~ v(B)~ep_l_ X))  

,g': (rp~ 0(/3)and qo .]_ X) N3tp~ 

(4.9) and (4.10) yield the equivalence of the possibilities 

(4.11) X ~ Mp(/3)(3V xfl 

But the question arises as to why the possibilities can be equivalent 
though the necessities are different and possibility is defined by necessity. 
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To answer this question we have to investigate the semantics of 
necessity and negation. The negation of Dalla Chiara within the modal 
language is a classical "no t"  and the necessity is a "possible-world necess- 
ity" that refers to other worlds accessible from the given one. Mittelstaedt 
on the other hand uses a nonclassical negation in the object language, viz. 
the orthocomplement in the Hilbert space, and a "classical," i.e., non-possi- 
ble-world, necessity (see Table III). The result of the first negation and the 
necessity is the same for both authors and is expressed in the equivalence 
of the necessary negation. The second negation is classical in both cases: 
Dalla Chiara uses again the classical negation of her modal language. 
Mit te ls taedt- -once got the metaproposition ,Xw~A--mus t  use the nega- 
tion of his metalanguage which is a classical "not ."  

It is remarkable that the negation in DaNa Chiara's nonmodal object 
language is nonclassical too, but this negation cannot be used to express the 
possibility since the latter must be formulated in a modal language. 

In order to compare Dalla Chiara's modalities with van Fraassen's 
necessity we define a necessity operator Z and a possibility operator iV1 on 
the set of subsets S of o,'~: 

(4.12) LS== (~p ~ af"~qo ~.,:r (qol~b(Brp~ S)}  

= a r  s 

This is motivized by the special case S = v(fl): 

Lo( ) = aelq ,  

For an atomic s e n t e n c e  Pi b, we can identify o(P,b) with [[m, E][ and we get 
the following relation: 

(4.13) I[m, ell = t21[m, E][  = Llftl[m, E]I 

that was mentioned by van Fraassen in his lecture during the Workshop on 
Quantum Logic (Erice, Sicily, December 1979). 

TABLE III 

Mittelstaedt DaUa Chiara 

First negation Nonclassical  Classical 
Necessity Classical Nonclassical 
Second negation Classical Classical 
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Equation (4.13) shows that DaUa Chiara's necessity L is stronger than 
van Fraassen's D, in agreement with our previous results, viz. (3.13), i.e., zx is 
equivalent with D, and (4.5), i.e., L is stronger than zx. 

As can be seen from (4.3) a proposition fl is necessary solely in the 
trivial case v(fl)= g if no other restrictions are made. So I think that 
Dalla Chiara's necessity L (or L resp.) is too strong and the concept of 
Mittelstaedt's zx or van Fraassen's [] should be preferred. 
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